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APPSPACK is software for solving unconstrained and bound-constrained optimization problems. It

implements an asynchronous parallel pattern search method that has been specifically designed for

problems characterized by expensive function evaluations. Using APPSPACK to solve optimization

problems has several advantages: No derivative information is needed; the procedure for evaluating

the objective function can be executed via a separate program or script; the code can be run serially

or in parallel, regardless of whether the function evaluation itself is parallel; and the software is

freely available. We describe the underlying algorithm, data structures, and features of APPSPACK

version 4.0, as well as how to use and customize the software.
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1. INTRODUCTION

APPSPACK is software for solving unconstrained and bound-constrained opti-
mization problems, that is, problems of the form

min f (x)
subject to l ≤ x ≤ u.

(1)
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Here, f : R
n → R ∪ {+∞} and x ∈ R

n. The upper and lower bounds
are optional on an element-by-element basis; specifically, l is an n-vector
with entries in R ∪ {−∞} and u is an n-vector with entries in R ∪ {+∞}.
To find a solution of Equation (1), APPSPACK implements asynchronous
parallel pattern search (APPS) [Hough et al. 2001; Kolda 2004], a method
in the class of direct search methods [Wright 1996; Lewis et al. 2000].
More specifically, APPSPACK version 4.0 is a software implementation of
the APPS algorithm presented in Kolda [2004], while previous versions of
APPSPACK are based on the algorithm presented in Hough et al. [2001]. It
should also be noted that APPSPACK 4.0 is the first version with a related
publication.

The APPS algorithm is a variant on generating set search, as described in
Kolda et al. [2003]. It is provably convergent if the underlying objective function
is suitably smooth [Kolda and Torczon 2003, 2004; Kolda 2004]. Moreover, APPS
is a direct search method, thus gradient information is not required. Therefore,
it is applicable to a variety of contexts.

APPSPACK is targeted to simulation-based optimization. These problems
are characterized by a relatively small number of variables (i.e., n < 100),
and an objective function whose evaluation requires the results of a complex
simulation. One standard application of this kind of optimization is parameter
estimation. The goal in this case is to identify the set of simulator input param-
eters that produces output most closely matching some given observed data.
For this problem, the objective function might be of the form

f (x) =
N∑

i=1

(
si(x) − oi

)2
.

Here, N denotes the number of data points to be compared; for example, the
points could correspond to times or spatial locations. The values oi for i =
1, . . . , N are the given observed data values at these points, and the values
si(x) for i = 1, . . . , N are simulator outputs at the same points, depending on
input x. Note that in order to discover the x that yields the best fit for the
observed data, multiple simulations are required.

Using APPSPACK to solve optimization problems has the following advan-
tages:

—No derivative information in needed.

—The procedure for evaluating the objective function does not need to be en-
capsulated in a subroutine and can, in fact, be an entirely separate program.

—The code can be run serially or in parallel, regardless of whether the objective
function itself runs in parallel.

—The software is freely available under the terms of L-GPL.

These advantages have prompted users to employ APPSPACK for a wide
variety of applications (see, e.g., Hough et al. [2001], Mathew et al. [2002],
Chiesa et al. [2004], Kupinksi et al. [2003], Croue [2003], Gray et al. [2004],
and Flower et al. [2004]).
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APPSPACK 4.0 is written in C++ and uses MPI [Gropp et al. 1996; Gropp and
Lusk 1996] for parallelism. The underlying APPS algorithm and its algorithm-
specific class structures are described in Section 2. Section 3 describes the meth-
ods and class structures used by APPSPACK to manage the function evaluation
process; these tools are not unique to the APPS algorithm and could in fact be
used in other computer software programs. Potential users of APPSPACK will
be most interested in Section 4, where we explain how to use APPSPACK, and
Section 6, where we summarize and reference some successful applications.
In addition, customizations of APPSPACK are discussed in Section 5. Sections
5.1 and 5.2 describe how the software can be directly linked with the objec-
tive function and how different means of communication can be used for the
function evaluation. An adhoc means of handling general linear and nonlin-
ear constraints is discussed in Section 5.3. The implementation of general data
structures for handling these types of constraints is underway and will be com-
municated in a future publication and software release.

The notation in this article is as follows. A boldface capital letter, for example,
T, denotes a set of vectors. A script capital letter, for example, I, denotes a set
of indices. A boldface lowercase letter, for example, x, denotes a vector, and its
ith entry is denoted by xi. Note that di represents the ith vector in a set of
vectors and not the ith component in d, which would instead be denoted di (no
boldface). Greek letters, for example, α, represent scalars.

2. APPS ALGORITHM AND IMPLEMENTATION

The APPS algorithm includes numerous details that are essential for efficient
and correct implementation, but not for a basic understanding of the method.
Omitting these details, APPS can be simply described as follows.

(1) Generate a set of trial points to be evaluated,

T = {x + �idi : i ∈ I}. (2)

Here, x is the best point known so far, di is the ith search direction, �i is
the corresponding step length, and I is the subset of search directions for
which new trial points should be generated.

(2) Send the set T to the conveyor for evaluation, and collect a set of evaluated
points, E, from the conveyor (the conveyor is a mechanism for shuttling
trial points through the process of being evaluated).

(3) Process the set E and see if there exists a point y such that

y ≺ x.

The notation “≺” (described in detail in Figure 2) essentially means f (y) <

f (x). If E contains such a point y, then the iteration is successful; otherwise,
it is unsuccessful.

(4) If the iteration is successful, replace x with the new best point (from E).
Optionally, regenerate the set of search directions and delete any pending
trial points in the conveyor.

(5) If the iteration is unsuccessful, reduce certain step lengths as appropriate.
In addition, check for convergence based on the step lengths.
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Fig. 1. APPS algorithm.

A detailed procedural version of APPS is given in Figure 1; for a complete
mathematical description and analysis, see Kolda [2004]. The iteration proce-
dure described in Figure 1 can be divided into two parts: steps (1) and (3)–(5),
and step (2). The implementation details of the first part are specifically tai-
lored to the APPS algorithm and described in the remainder of this section. The
second part includes more general features of the function evaluation manage-
ment used by APPSPACK and its implementation details are described in the
next section.
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2.1 Points

Points (i.e., the best point and trial points) are stored as APPSPACK::Point ob-
jects. As previously described, new points are generated according to Equa-
tion (2), and each new point y is of the form

y = x + �idi, (3)

where x is the parent, �i is the step length, and di is the direction. Besides
the vector y ∈ R

n itself, each Point object stores some additional relevant in-
formation. Every Point includes a unique tag, that is, a positive integer that
is used as an identifier. In addition, each Point contains information about
the parent (i.e., the vector x), search direction, and step length used to gen-
erate y according to Equation (3). Once a trial point has been evaluated, its
function value f (y) ∈ R ∪ {+∞} is also stored in Point. All function val-
ues are stored as APPSPACK::Value objects which handle the possibility that
f (y) = +∞. APPSPACK uses the special case f (y) = +∞ to signify trial points
that could not be evaluated (e.g., the simulator failed) and certain types of
infeasible points.

In order for a trial point y to become the new best point (i.e. replace the cur-
rent best point), it must satisfy two conditions. First, it must satisfy a decrease
condition with respect to its parent, and second, it must have a function value
that improves upon that of the current best point. We describe both of these
conditions next.

A trial point y satisfies a decrease condition with respect to its parent x and
step length � if the following holds:

f (y) < f (x) − α�2, (4)

where α ≥ 0 is a user-defined constant. If α = 0, this is called simple de-
crease [Torczon 1995]; otherwise, if α > 0, this is called sufficient decrease [Yu
1979; Lucidi and Sciandrone 2002]. To indicate whether a trial point satisfies
Equation (4) with respect to its parent, state information is stored in object
Point. The state also specifies whether a trial point has been evaluated.

Satisfying decrease condition Equation (4) is only part of the comparison
APPSPACK uses to determine whether a point is eligible to replace the current
best point. The comparison also considers the corresponding function values as
compared to that of the current best point and defines a scheme for tie-breaking,
in the case that these function values are equal. The complete procedure for
determining if a point y is better than a point x (i.e., whether y ≺ x) is detailed
in Figure 2.

In summary, an APPSPACK Point object stores the following information:

—The vector y ∈ R
n;

—its unique tag, denoted TAG(y);

—its parent’s tag, denoted PARENT TAG(y);

—its parent’s function value;

—the step used to produce it, denoted STEP(y);

—the index of the direction used to produce it, denoted DIRECTION INDEX(y);
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Fig. 2. Determining if y ≺ x.

—the state information; and

—its function value f (y), if it has been evaluated.

The state information indicates whether the point has been evaluated, and
if it has, whether it satisfies the sufficient decrease condition. Note that the
parent vector is not explicitly stored; instead, only its corresponding tag and
function value are stored. Likewise, the actual direction vector di is not stored;
instead, only its index i is stored.

2.2 Constraints and Scaling

Bound constraints are supported via the APPSPACK::Constraints::Bounds
class. The constraints object is passed as an argument to the APPSPACK::Solver,
which executes the APPS algorithm so that we leave open the possibility of al-
lowing user-developed constraint classes in future versions.

The bounds on the variables are specified by the user in the APPSPACK
input file (see Section 4.2). They are used both to determine a conforming set of
search directions (see Section 2.3) and to generate trial points (see Section 2.4).

Related to bounds and stored in the same object is the variable scaling. Be-
cause derivative-free methods do not use any gradient information, proper scal-
ing of the variables is critical. Although scaling is not explicitly mentioned in
the description of APPS provided in Figure 1, it plays various important roles
such as in convergence (see Section 2.5), determining a conforming set of search
directions (see Section 2.3), calculating trial points (see Section 2.4), and looking
up points in the cache (see Section 3.4).

In the case that all bounds are finite, the user may choose either to employ the
default scaling vector or to provide one in the APPSPACK input file (“Scaling”
in the “Bounds” sublist). The default scaling vector is defined using (finite)
bounds. Specifically, let l, u ∈ R

n denote the vectors of the lower and upper
bounds, respectively. Then, the components of the scaling vector s ∈ R

n are
defined as

si = ui − li for i = 1, . . . , n. (5)

If finite bounds are not provided or do not exist, s must be provided by the user.
Note that this approach to scaling was motivated by another derivative-free
optimization software package, IFFCO [Choi et al. 1999], a Fortran implemen-
tation of the implicit filtering method [Gilmore and Kelley 1995; Kelley 1999].
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2.3 Search Directions and Step Lengths

The search directions are handled by the APPSPACK::Directions class. A new set
of search directions, or a search pattern, is computed every time an iteration is
successful (see step (4) in Figure 1). To generate this search pattern, APPSPACK
considers the scaled coordinate directions and excludes directions outside the
tangent cone. Specifically, given the current best point x, the set of search
directions is defined as

D = {d1, . . . , dp} = {siei : xi < ui} ∪ {−siei : xi > �i},
where di is the ith search direction, ei is the ith unit vector, and ui ∈ R ∪ {∞}
and �i ∈ R ∪ {−∞} are the bounds on xi (as defined in Equation (1)).

Each direction di has a tag τi and step length �i associated with it. The
tag is an integer that indicates whether there are any points in the evaluation
conveyor associated with a given search direction. If τi = −1, then there are
currently no unevaluated trial points with parent x that were generated using
direction di. In this case, the step length �i is the value that will be used in
step (1) of Figure 1 to compute a new trial point in direction i. Otherwise, τi
is the tag number of the point associated with direction di, and �i is the step
length that was used to generate this point.

2.4 Generation of Trial Points

Trial points are generated in the APPSPACK::Solver class. As indicated in step
(1) of Figure 1, a trial point is computed for each direction i ∈ I, where I =
{i : �i ≥ �tol and τi = −1}. In other words, the set I contains search directions
that have not yet converged (see Section 2.5) and do not currently have a trial
point in the evaluation conveyor.

For each i ∈ I, a feasible trial point is calculated. If y = x + �idi is not
feasible, then an appropriate pseudostep must be determined. The pseudostep
�̃i is the longest possible step that is feasible, formally defined as

�̃i = max{� ∈ [0, �i] : l ≤ x + �di ≤ u}.

2.5 Stopping Conditions

The primary stopping condition in the APPS algorithm is based on step length.
This criterion was chosen because it can be shown that if the objective function
is continuously differentiable, then the norm of the gradient (or an analogous
measure of the constrained measure of stationarity in the bound-constrained
case) can be bounded as a multiple of the step size, for example, ‖∇ f (x)‖ =
O(maxi{�i}) [Kolda et al. 2003]. In other words, the steps only get smaller if
the norm of the gradient is decreasing. Hence, the step length can be used to
define a stopping requirement.

The stopping condition based on step length is used in step (5) of Figure 1.
Specifically, APPS converges if all the step lengths are less than the specified
tolerance; that is, if

�i < �tol for i = 1, . . . , p. (6)

Here, we say that the ith direction is converged if �i < �tol. The tolerance �tol
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can be specified by the user in the APPSPACK input file (“Step Tolerance” in
the “Solver” sublist). The default value is �tol = 0.01, which corresponds to a
1% change in the variables when the default scaling defined in Equation (5) is
used.

An alternative stopping condition is based on whether the function has
reached a specified threshold. This criterion may be useful when the desired
minimum value is known. For example, in the parameter estimation problem
described in Section 1, it may be reasonable to stop when f (x) < 0.03 or when
the fit is within 3% of being exact. Step (4) of Figure 1 shows the implementa-
tion of the function-tolerance stopping criteria. Specifically, the iterations are
terminated if

f (x) ≤ f tol, (7)

where f tol is defined by the user in the APPSPACK input file (“Function
Tolerance” in the “Solver” sublist). By default, this stopping condition is not
employed.

Stopping can also be defined in terms of the number of function evaluations.
In other words, the algorithm can be discontinued after a specified number of
function evaluations has been completed. This sort of stopping criterion might
be useful when the function evaluations are based on a particularly expensive
simulation, and the user wants to adhere to a specified budget for evaluations.
By default this stopping criterion is not used, but it can be activated by the
user specifying a maximum number of function evaluations in the APPSPACK
input file (“Maximum Evaluations” in the “Solver” sublist).

3. APPSPACK FUNCTION EVALUATION MANAGEMENT

This section describes the implementation details and specific C++ objects re-
lated to management of the function evaluation process used in APPSPACK
version 4.0. Although we describe the evalution conveyor, executor, evaluators,
and cache, as they pertain to APPSPACK, it should be noted that they are
merely a general way to handle the process of parallelizing multiple indepen-
dent function evaluations and efficiently balance the computational load. Thus,
these classes may be applicable to other software packages.

3.1 The Evaluation Conveyor

From the point of view of the APPS algorithm, the evaluation conveyor simply
works as follows: A set of unevaluated points T is exchanged for a set of evalu-
ated points E (step (2) of Figure 1). The set T may be empty. However, because
returning an empty set of evaluated points means that the current iteration
cannot proceed, the set E must always be nonempty.

Within the conveyor, a trial point moves through three stages. The first
stage is for the trial point to wait in a holding pen (the “Wait” queue) until
resources become available for evaluating its function value. The second stage
occurs while the function value is in the process of being computed, in which
it sits in the “Pending” queue. The third stage takes place after the evaluation
has been completed, while the trial point waits to be returned as output from
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the conveyor (in the “Return” queue). Each of these stages is described in more
detail to follow.

One key point in this process is that it may take more than one iteration for a
point to move through the conveyor. Thus, the set of points T that is input is not
necessarily the same as the set of points E that is output. Furthermore, because
it may take multiple iterations for a point to move through the conveyor, it is
often desirable to remove some or all of the points that are in the first stage of
the conveyor, waiting for evaluation. This removal of points is called pruning.

Every point submitted to the evaluation conveyor is eventually either re-
turned or pruned. Pruning occurs in step (4) of Figure 1, while returning takes
place in step (2). The evaluation conveyor facilitates the movement of points
through the following three queues:

—W. The “Wait” queue where trial points wait to be evaluated. This is the only
queue from which points can be pruned.

—P. The “Pending” queue for points with on-going evaluations. Its size is re-
stricted by the resources available for function evaluations.

—R. The “Return” queue where evaluated points are collected. Its size can be
controlled by the user.

This conveyor process is handled by the APPSPACK::Conveyor object. Each
time a set of trial points is received (step (2) of Figure 1), the conveyor follows
the procedure diagrammed in Figure 3.

Points that are waiting to be submitted to the executor for evaluation are
stored in W, and remain there until either there is space in P or they are
pruned. The W queue is pruned whenever an iteration is successful (step (4) of
Figure 1). By default, pruning is defined as the emptying of W. However, the
results of a pruning can be modified by setting the “Max Queue Size” parameter
in the “Solver” sublist of the APPSPACK input file. Here, the user can specify
the number of points that should remain in W after it is pruned. In this case,
the oldest points are deleted and the newest remain in the queue.

Before a point moves from W to P, the cache is checked to see if the function
value has already been calculated for this point (see Section 3.4). If so, the
cached function value is obtained, and the point is moved directly to R. If not,
the point moves to P and is evaluated. Once a point has been pushed from W
onto P or R, it can no longer be pruned.

Points which have been submitted to the executor for evaluation are stored
in P. The executor handles the distribution of evaluation tasks to workers and
is described in Section 3.2. The size of P is solely determined by the executor
and depends on available resources. Recall that APPSPACK was designed to
accommodate problems that may have expensive function evaluations. Hence,
points may remain in P for several iterations. Once the executor returns the
results of the function evaluation, the point is moved to R.

Essentially, the conveyor process continues until enough evaluated points are
collected in the R. Enough is defined by the “Minimum Exchange Return” value
set in the “Solver” sublist of the APPSPACK input file. The default value is one,
but larger values can be used to force the conveyor to collect more evaluated
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Fig. 3. Conveyor actions for trial point exchange.

trial points before returning. In the extreme, the conveyor process can continue
until every trial point has been evaluated and collected. This behavior defines a
synchronous pattern search [Lewis and Torczon 1996] and can be activated by
setting the parameter “Synchronous” to true in the “Solver” sublist (the default
is false). Finally, note that the size of R can also be controlled by defining a
“Maximum Exchange Return” size in the “Solver” sublist, which defaults to
1000.
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3.2 Executors: Function Evaluation Coordinators

When a point enters the second stage of the conveyor (the P queue) it must
be assigned to a worker (if running in parallel) and evaluated. The executor
coordinates the assignment of points to workers for function evaluation. Its
pure virtual abstract interface is defined in APPSPACK::Executor::Interface
and includes the following:

—A Boolean function that returns true if the executor is waiting to spawn more
function evaluations. The result of this function is used in the conveyor test
|P| < MaxPending, shown in Figure 3.

—A spawn function that initiates a function evaluation. The input is a vector
y and its corresponding tag, TAG(y). The tag is used as an input argument in
the function evaluation executable, and it is needed to match the resulting
function value with the appropriate point in queue P.

—A receive function that checks whether any function evaluations have fin-
ished. If an evaluation has been completed, the output is the objective func-
tion value and any related information.

The executor is passed as an argument to the APPSPACK::Solver, the
class that runs the APPS algorithm. APPSPACK 4.0 contains two con-
crete implementations of the executor, namely, APPSPACK::Executor::MPI
and APPSPACK::Executor::Serial, as well as the corresponding executables,
appspack mpi and appspack serial. In addition, the executor can be customized
by the user, as explained in Section 5.1.

The MPI executor that comes with APPSPACK spawns function evaluations
to worker processes. All processors save one are workers; that is, if appspack mpi
is run with five processes, then there will be four workers and the size of the
pending queue P will be four. Each time APPSPACK calls the spawn func-
tion, the executor sends an MPI message to an idle worker, containing both a
point to be evaluated and its corresponding tag. The executor marks the worker
as busy. The worker performs the evaluation by calling the evaluator (see
Section 3.3) and returns an MPI message with the tag, a Boolean indicating if
there is a function value, the function value itself, and a message string (e.g.,
"Success"). When APPSPACK calls the receive function, the executor checks
for pending messages from a worker (and there may not be any), collects the
result, marks the worker that returned the message as idle, and returns the
result to APPSPACK.

The serial executor does exactly as its name implies—executes function eval-
uations one-at-a-time. In other words, the size of the pending queue P is exactly
one and all evaluations are performed immediately on the current processor (be-
cause there are no workers). The spawn operation calls the evaluator (described
in Section 3.3) directly. While there may be some situations where the serial
version of APPSPACK proves useful, this mode is provided primarily for testing
purposes.

The executor may be customized, the reasons and methods for which are
discussed in Section 5.2.
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Fig. 4. The system call evaluator.

3.3 Evaluators

The actual objective function evaluation of the trial points is han-
dled by the evaluator, whose abstract interface is defined in the
APPSPACK::Evaluator::Interface class. This structure allows the user to ei-
ther employ the provided default evaluator or create a customized one. The
default evaluator is the APPSPACK::Evaluator::SystemCall class, which works
as follows: A function input file containing the point to be evaluated is cre-
ated. Then, an external system call is made to the user-provided executable
that calculates the function value. After the function value has been com-
puted, the evaluator reads the result from the function output file. Finally, both
the function input and output files are deleted. This process is illustrated in
Figure 4. Information regarding the user-provided executable and the formats
of function input and output files is given in Section 4.1.

The evaluator is its own entity and not part of the executor, although it is re-
lated. In MPI mode, each worker possesses its own evaluator object and receives
messages from the executor on the master processor with the information (e.g.,
the point to be evaluated) it needs to pass on to the evaluator. We also note
that any information needed to construct and intialize the evaluator has to
be passed from the master to the worker processes via an MPI message before
the APPSPACK::Solver::solve function is called. In our case, for example, the
master sends the workers the name of the executable to be used for the function
evaluation. Note that, in serial mode, the executor owns the evaluator directly
and calls it in the spawn function.

By default, APPSPACK runs function evaluations as separate executables
and communication with the evaluation executable is done via file input and
output. In other words, each worker makes an external system call, as illus-
trated in Figure 5. This default design ensures applicability of APPSPACK to
simulation-based optimization because simulations are often too complex to
be easily or reasonably encapsulated into a subroutine. Moreover, allowing the
user to supply a separate executable extends the usability of APPSPACK, since,
for example, the user can write the program for the function evaluation in
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Fig. 5. Parallel APPSPACK using the (default) system call evaluator.

any language or simply provide a script that executes individual steps of a
complicated function evaluation. Finally, although system calls and file I/O
do add to the overall run time, the simulation time often makes the external
function calls and file I/O negligible. For applications in which the user may
prefer to eliminate this overhead (e.g., the function evaluation may be rela-
tively inexpensive), the user can provide a customized evaluator, as detailed in
Section 5.1.

3.4 Cache

Because the APPS algorithm is based on searching a pattern of points that lies
on a regular grid, the same point may be revisited several times. Thus, to avoid
evaluating the objective function at any given point more than once, APPSPACK
employs a function value cache. Each time a function evaluation is completed
and a trial point is placed in the return queue R, the conveyor stores this point
and its corresponding function value in the cache. Then, before sending any
point to the pending queue P, the conveyor first checks the cache to see if its
value has already been calculated. If it has, the cached function value is used
instead of repeating the function evaluation.

Cache operations are controlled by the APPSPACK::Cache::Manager class. Its
functions include inserting new points into the cache, performing lookups, and
returning previously calculated function values. Optionally, the cache manager
can also create an output file with the contents of the cache or read an input file
generated by a previous run. These features can be activated using the “Cache
Output File” and “Cache Input File” parameters of the “Solver” sublist in the
APPSPACK input file.
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Like its predecessors, APPSPACK version 4.0 uses a splay tree to store points
in the cache [Hough et al. 2000]. A splay tree is a binary search tree that uses a
series of rotations to move any accessed node to the root (see Sleator and Tajan
[1985]). Because the most recently accessed nodes are kept near the root of the
tree, searching these nodes is fast. The APPS algorithm can take advantage of
this characteristic of splay trees because it normally only revisits points that
were evaluated recently.

Cache points are stored as APPSPACK::Cache::Point objects that include only
the vector itself and its corresponding function value. This structure eases stor-
age and comparison, including special rules for point comparison, as explained
next.

APPSPACK does not require exact matched in-cache lookups. Rather, it only
requires the points to be ε-equal. Specifically, trial points x, y ∈ R

n are ε-equal
if

|xi − yi| <= εsi for i = 1, . . . , n,

where si is the ith component of the scaling vector s and ε is some tolerance.
The value of ε can be set by the user using the “Cache Comparison Tolerance”
parameter in the “Solver” sublist of the APPSPACK input file, and defaults to
half the stopping tolerance �tol.

It is also necessary to impose some order on the points so that they can be
placed in the tree. Correspondingly, this cache comparison test is also based on
the tolerance ε and the scaling vector s. Here, trial point x is ε-less than y if
there exists an index j such that

|xi − yi| < εsi for i = 1, . . . , j − 1 and y j − x j > εsi.

In other words, for ordering purposes x comes before y if the first j − 1 coordi-
nates of x and y are ε-equal, and the j th coordinate of y is sufficiently greater
than the j th coordinate of x.

4. USING APPSPACK

APPSPACK 4.0 is available as a free download under the terms of the GNU
Lesser General Public License.1 Instructions for downloading, compiling, and
installing APPSPACK 4.0 can be found in the README file included with the
software. Several resources are available for APPSPACK users, including online
documentation, mailing lists, and a bug-reporting system. The access and use
of these tools is described in detail in the HTML documentation.

4.1 Creating a Function Evaluation for APPSPACK

An executable for evaluating the objective function must be provided by the
user. It can be a single program or a script that, in turn, calls other programs.
The APPSPACK evaluator calls this executable repeatedly to evaluate different
trial points via the C system() command.

1http://www.gnu.org/copyleft/lesser.html
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The executable command line should accept three input arguments: an input
file name, output file name, and a tag. In other words, the the calling sequence
is

<Executable Name> <Input File> <Output File> <Tag>

The input file is created by APPSPACK to be read by the executable and is
simply formatted. The first line is an integer that indicates the length of the
vector, and each subsequent line contains one component of the vector. For
example, the APPSPACK input file containing the vector [1.24e-1, 17.4e-3]
∈ R

2 is:

2
1.24e-1
17.4e-3

The output file is created by the executable and read by APPSPACK. It contains
either the function value as a single numeric entry or an error string. For
example, an output file containing a function value may contain the single line
7.58e-3, whereas an output file with an error string may contain the single line
Meshing Error.

APPSPACK has the ability to tabulate different error strings and can track
an unlimited number of messages. Strings are defined by the user in the
executable. They can be more than one word, but must be the length of
only one line, and the string “Success” is disallowed as an error string. This
feature may be useful for identifying the reasons for a function evaluation
failure.

The MPI version of APPSPACK executes multiple function evaluations in
parallel. To prevent these parallel processes from overwriting each other’s files,
each call to the executable includes uniquely named input and output files.
This is accomplished using the tag number, stored in the APPSPACK Point
structure, to name related files. The tag is also provided as the third input
argument of the executable so as to allow the user to uniquely name any addi-
tional files that may be created during an evaluation of the objective function.
Note that while the tags and subsequent file names are unique for a single run
of APPSPACK, they are not unique across repeated runs.

After a function evaluation has been completed, APPSPACK will automati-
cally delete the input and output files. These files should not be deleted by the
executable. However, any additional files that were created in the process of
evaluating the function should be deleted by the executable. So-called leftover
files, that is, temporary files that are not deleted, are frequent sources of error
and may cause system disk-space problems.

4.2 Creating the APPSPACK Input File

The user must provide an input file that specifies the parameters for run-
ning APPSPACK. There are three categories of input parameters: Evaluator,
Bounds, and Solver. Each is described in the subsections that follow. To clarify
our discussion of the general formatting of an APPSPACK input file, consider
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Fig. 6. A sample APPSPACK input file.

the example file shown in Figure 6. Full instructions on specifying the input
file can be found in the HTML documentation under “Using the APPSPACK
Executables.”

The user has the option of defining any number of input parameters. These
parameters ensure the flexibility and applicability of APPSPACK to a wide va-
riety of applications. Some of these parameters permit the user to customize the
input or output of the software and do not have any overall effect on the algo-
rithm itself. Others allow the user to change some of the underlying mechanics
of the method and may affect the algorithm’s speed, but should not affect its
convergence. Despite the number of choices offered, we have not encountered
any difficulties finding appropriate parameter values for any applications. In
fact, default values tend to work well in most cases. The two most critical pa-
rameters are "Step Tolerance" and "Scaling" because both play important
roles in the algorithm itself. We now discuss the parameters in more detail,
including some indication of their overall importance.

4.2.1 Evaluator Parameters. The evalutor, described in Section 3.3, han-
dles the actual evaluation of trial points. Its three parameters (Executable
Name, Input Prefix, and Output Prefix) merely indicate the names of files, as
described in Section 4.1, and more details can be found in the HTML documen-
tation under “Using the APPSPACK Executables.”

4.2.2 Bounds Parameters. As described in Section 2.2, it is critical that
the variables be reasonably scaled because no gradient information is available
to the APPS algorithm. In APPSPACK, a default scaling vector s can only
be defined if finite upper and lower bounds are provided for each variable, in
which case,

si = ui − li, for i = 1, . . . , n,

where u and l denote (finite) upper and lower bounds, respectively. If complete
upper and lower bounds are not available, then the Scaling must be provided
by the user in the input file. The bounds parameters are Lower, Upper, Scaling,
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Is Lower, and Is Upper. Details on specifying these parameters can be found
in the HTML documentation under “Bounds Parameters.”

4.2.3 Solver Parameters. The parameters that are called for in the ini-
tialization of the APPS algorithm (outlined in Figure 1) are defined using the
parameters in this section.

The most important parameter is Step Tolerance because it can be
application-specific. For example, many simulators are insensitve to small
changes in parameter inputs. Thus, larger step tolerance can be used to
reduce the overall number of function evaluations required to reach a
solution.

The parameters Initial X, Initial F, and Initial Step control the initial-
ization of the method. Note that if Initial F is not provided, then it will not
be calculated by the method.

The following parameters are used in the algorithm itself: Minimum Step,
Contraction Factor, and Sufficient Decrease Factor.

As discussed in Section 2.5, the primary stopping condition of APPSPACK is
based on step length (Step Tolerance). However, two alternative stopping con-
ditions are offered and can be activated with the following parameters: Function
Tolerance and Maximum Evaluations.

The evaluation conveyor, described in Section 3.1, can be forced to run in syn-
chronous mode via the Synchronous parameter. Other parameters that influ-
ence the conveyor are: Max Queue Size, Minimum Exchange Return, and Maximum
Exchange Return.

There are also some options for how the cache is used. The cache can be
saved and read-in again using the Cache Output File and Cache Input File
parameters. The Cache Comparison Tolerance determines when two points are
ε-equal (with respect to the infinity-norm) and should not be set to more than
half the Step Tolerance.

Lastly, the following two parameters allow the user to control the amount
and format of the APPSPACK output and have no effect on the algorithm. The
Debug parameter specifies how verbose the output should be on a scale of 1
to 7, with higher values producing more output. The Precision indicates the
number of digits of precision in the output.

The particulars on specifying any of the parameters discussed in this section
can be found in the HTML documentation under “Solver Parameters.”

4.3 Running APPSPACK and its output

Once an executable and an input file have been created, the user is ready to run
APPSPACK. Instructions and sample execution command lines for both serial
and parallel versions can be found in the software README file.

For basic testing purposes and to confirm that the software is compiled cor-
rectly, three examples are provided in the ${APPSPACK}/examples directory. All
three examples use the simple objective function

f (x) =
n∑

i=1

μi x2
i .
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In Examples (1) and (2), n = 2 and μi = i, and in Example (3), n = 3 and μi = 1.

Example (1) includes only finite simple bounds on the variables, while Exam-
ples (2) and (3) include some nonlinear constraints (discussed in more detail in
Section 5.3). To run any of the examples, the user should go to the examples
directory, and consult the README file. Sample output files (e.g., example1.out)
include results to assist the user in detecting any installation problems, al-
though the asynchronism means that every run will differ somewhat.

In the remainder of this section, we briefly describe the sample APPSPACK
output for Example (1) (see ${APPSPACK}/examples/example1.out). The output
begins with a display of the input parameters. When a default parameter is
used, it is always indicated by [default]; this is important so that users know
what the parameter values are and how they were set.

Subsequent output indicates the algorithm’s progress. Each line indicates a
new status for the algorithm. At the default debugging level, only new mini-
mums (i.e., improvements on the best-known point) are shown, though more
information (such as the set E of evaluated trial points) is displayed at higher
debugging levels. Note that in this example, “Success” is the only message string
used. In other examples, these counts may include error strings indicating in-
feasibility or simulation failure; see Section 5.3 for an example.

At the end of the output, the Final State indicates why the algorithm termi-
nated. In this case, it was because the stopping criterion based on step length
was satisfied. Observe that statistics on the number of function evaluations in
total and per processor are also printed.

5. CUSTOMIZING APPSPACK

Since the serial version of APPSPACK is provided primarily for testing pur-
poses, we focus our discussion of customizations on the MPI version.

5.1 Customizing the Function Evaluations

As described in Section 3.3, the default version of APPSPACK requires function
evaluations to be run as separate executables, and any communication between
workers and the executable must be done using file input and output.

Despite the advantages of using system calls and file I/O for simulation-
based optimization, there are some applications for which the user may prefer
to eliminate the associated overhead. For example, some function evaluations
may require relatively large amounts of auxiliary data and the use of system
calls would require this data to be reread for every evaluation. It may also be
the case that the function evaluation is inexpensive in comparison with file I/O
requirements.

For these applications, the user can create a customized evaluator
class, derived from APPSPACK::Evaluator::Interface, to be used in place of
APPSPACK::Evaluator::SystemCall, and directly compute the function value
instead of making a call to an outside program. This also eliminates the need for
function input and output files. An illustration of this customization is shown
in Figure 7. Note that, unlike the default evaluator shown in Figure 5, each
worker itself actually executes the function evaluation.

ACM Transactions on Mathematical Software, Vol. 32, No. 3, September 2006.



Algorithm 856: APPSPACK 4.0: Asynchronous Parallel Pattern Search • 503

Fig. 7. Parallel APPSPACK using a customized evaluator.

A documented example of a customized evaluator is provided in the direc-
tory ${APPSPACK}/example-custom-evaluator. Additional instructions for cre-
ating a custom evaluator are provided in the APPSPACK documentation (see
“Customizing APPSPACK” under “Related Pages”).

5.2 Customizing the Parallelization

Customizing the evaluator only changes how individual functions are
executed. In some cases, users may want to customize the way in
which the manager-worker relationship works. The key is in the
APPSPACK::Executor. Two versions are provided with APPSPACK, namely,
APPSPACK::Executor::Serial and APPSPACK::Executor::MPI, for serial and
MPI versions of APPSPACK, respectively. A user can write a customized class
derived from APPSPACK::Executor::Interface. Note that customizing the ex-
ecutor likely eliminates the need for an evaluator object.

Some motivations for customizing the executor are as follows.

—Multilevel parallelism can be achieved by assigning groups of processors to
each function evaluation.

—The format of MPI messages sent between the manager and worker can be
modified.

—The evaluation of functions can be handed-off to another library, such as a
general optimization interface.

A documented example of a customized executor is provided in the direc-
tory ${APPSPACK}/example-custom-executor. Additonal instructions for creat-
ing a custom evaluator are provided on the APPSPACK documentation (see
“Customizing APPSPACK” under “Related Pages”).
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5.3 General Linear and Nonlinear Constraints

In APPSPACK 4.0, general linear and nonlinear constraints are not handled
directly, but can be incorporated via a heuristic barrier approach. We employ
the error string capabilities of the function output and a straightforward modi-
fication of the function evaluation. Note that this customization only affects the
function evaluation executable (or customized evaluator) and does not result in
any changes to the APPS algorithm itself.

Let y be a trial point generated by the APPS algorithm. Then, to incorporate
general linear or nonlinear constraints, use the following customized function
evaluation procedure:

(1) Check to see if y satisfies the constraint(s).

(2) If y is feasible, evaluate the function.

(3) If y is infeasible, write the appropriate error string.

Given the results of the function evaluation, either the function value or error
string, the APPS algorithm will continue as normal. In the case that the trial
point is infeasible and an error message is returned, the function value will be
handled as f (y) = +∞.

Both Examples (2) and (3) in ${APPSPACK}/examples contain bound and
general nonlinear constraints. The bound constraints are handled by the
APPSPACK::Constraints::Bounds class, as described in Section 2.2, and the
nonlinear constraints are incorporated directly into the provided function eval-
uation routines. Consider the following line of output produced by running
Example (2):

New Min: f= 1.005e+00 x=[-1.000e+00 5.000e-02 ] step=6.250e-02
tag=20 state=Evaluated Constraint Violation: 3 Success: 11

Here, APPSPACK is tracking both the number of points not evaluated because
they violated at least one of the constraints (Constraint Violation) and the
number of feasible points that were successfully evaluated (Success). More-
over, the final function evaluation counts include a breakdown of feasible and
infeasible points:

Number of Cached Function Evaluations: 7
Number of Evaluations: 26
Evaluation Breakdown by Message Type:
Constraint Violation: 8 Success: 18

Evaluation Breakdown by Processor and Message Type:
Worker #1 Constraint Violation: 5 Success: 7
Worker #2 Constraint Violation: 3 Success: 11

Using a customized function evaluation script to handle general linear and
nonlinear constraints works reasonably well for the simple examples here, and
we also note that a similar customization of APPSPACK 4.0 has been suc-
cessful in solving the more complicated constrained optimization problems
described by Fowler et al. [2004]. However, this technique is by no means
guaranteed to work and, in fact, likely to fail, even in simple cases. Future
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versions of APPSPACK will include methods for handling linear and nonlinear
constraints.

6. CONCLUSIONS

We have described the underlying algorithm, data structures, features, and
advantages of APPSPACK version 4.0, a software package for solving uncon-
strained and bound-constrained optimization problems. Because APPSPACK
does not require any derivative information, it is applicable to a wide variety
of applications. Furthermore, since the procedure for evaluating the objective
function can be an entirely separate operation, APPSPACK is well-suited for
simulation-based optimization or problems for which the evaluation of the ob-
jective function requires the results of a complicated simulation. Moreover, the
software is freely available and can be easily downloaded, compiled, and in-
stalled. The software has been written so that it is easily extensible and cus-
tomizable to individual user needs.

Many real-world applications have demonstrated the benefits and suitabil-
ity of APPSPACK. Because these problems are nontrivial and require lengthy
descriptions of not only the application of interest, but also related simulators,
objective functions, and numerical results, we direct interested readers to the
following references.

—In Hough et al. [2001], APPSPACK is successfully applied to a thermal de-
sign problem for determining the settings for seven heaters in a thermal
deposition furnace, as well as to a 17-variable parameter estimation problem
in electrical circuit simulation. In both problems, external simulation codes
were required for the computation of the objective function.

—Mathew et al. [2002] use APPSPACK to solve a problem in microfluidics with
a nonsmooth objective function and requisite sensitivity computations that
are extremely expensive.

—Chiesa et al. [2004] describe a forging process problem in which APPSPACK
was successful where gradient-based optimization methods with finite dif-
ferences failed. In this case, the objective function is based on several
stand-alone codes, including a mesh generator and structural analysis
code.

—APPSPACK is used to fit statistical models in image processing in Kupinksi
et al. [2003].

—Croue [2003] uses APPSPACK to determine the parameters of a wild-fire
simulator.

—The performance of APPSPACK is analyzed and shown to be preferable to
simulated annealing for a transmembrane protein structure prediction prob-
lem in Gray et al. [2004].

—In Liang and Chen [2003], the NEOS optimization server [Dolan et al.
2002] is used to compare APPSPACK to a limited-memory quasi-Newton
method for optimal control of a fed-batch fermentation process. The conclu-
sion is that APPS is a more powerful tool for this stochastic optimization
problem.
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—Fowler et al. [2004] investigate the applicability of a variety of direct search
methods to a set of groundwater problems. The objective functions in these
problems require the results of the MODFLOW simulator [McDonald and
Harbaugh 1988]. The conclusion is that APPSPACK is a highly competitive
option.
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